
Augmenting Tree Search with Neural Networks in an
AI Agent for Pac-Man

Student Name: J. Huntbach
Supervisor Name: G. Mertzios

Submitted as part of the degree of BSc Computer Science to the

Board of Examiners in the Department of Computer Sciences, Durham University

Abstract –
Background: AlphaGo Zero used a neural network in combination with Monte-Carlo Tree Search

(MCTS) to achieve superhuman performance in the game of Go, and consequently inspired many others
to experiment with this approach. Several AI game agents have found success by implementing these
methods, but there are many ways in which a neural network can augment a tree search

Aims: The aim of this project is to combine tree search and neural networks in a different way to
‘the AlphaGo Zero method’, to create an AI agent for Pac-Man. The project investigates whether the
resulting agent is any more successful than agents that use tree search or a neural network exclusively, and
additionally aims to highlight some variables which can affect the performance of agents using tree search
and/or neural networks within a game environment.

Method: AlphaGo Zero used a neural network to evaluate leaves within the tree search, replacing
the simulation phase of MCTS. This project will instead use a neural network to control the gameplay
within each playout of the search. The scores achieved by this hybrid agent will be compared to the scores
achieved when the agent is restricted to using just the search tree or the neural network, to reveal whether
or not the hybrid approach is effective. On top of this, the scores of some human players will be used to
indicate the overall effectiveness of the agents produced.

Results: The agent was able to achieve an average score of 12447 when using just MCTS, and a score
of 3425 when using just the neural network. When using the proposed combination of MCTS and neural
network, the agent achieved an average score of 19437 (a 56% improvement on the pure MCTS agent). In
contrast, human players were able to achieve scores anywhere in the range of 2380 to 18490.

Conclusions: The proposed approach of using MCTS with a neural network controlling Pac-Man
during the simulation phase can indeed increase the performance of an AI agent in Pac-Man, with the
proposed design allowing an agent to outperform all of the human players in the trial.

Keywords – MCTS (Monte-Carlo Tree Search), NEAT (Neuro-Evolution of Augmenting Topologies),
Reinforcement Learning, Neural Networks, Genetic Algorithms, Pac-Man, Artificial Intelligence (AI)

I INTRODUCTION

The introduction to this paper begins by outlining the rules and objectives of Pac-Man and
explaining why the game provides an interesting challenge for AI research. We then discuss the
inspiration behind this project and the research question that we aim to address, as well as the
project’s objectives and deliverables.

1



A Pac-Man

Pac-Man is a challenging, classic arcade game with a relatively simple set of rules. The player
must navigate Pac-Man (the yellow character) around the maze shown in figure 1, collecting
small orange dots to increase their score. While doing so, the player must avoid four ghosts,
who will chase, and try to eat Pac-Man. If Pac-Man eats one of the four big orange dots, known
as ‘energisers’, then the ghosts become temporarily vulnerable, and Pac-Man may eat them for
extra points. After being eaten, a ghost’s eyes will return to the centre of the maze for a short
time, before exiting to chase Pac-Man once again. Once the entire maze has been cleared of dots,
the level is reset and the game continues. The aim of the game is to achieve the highest score
possible before losing all three lives.

Figure 1: The game screen in Pac-Man. Accessed from: https://en.wikipedia.org/wiki/Pac-Man

Despite the simplicity of the game’s objective, complex strategies are required in order to
achieve high scores. Additionally, although the ghosts do have predetermined movement strate-
gies, while they are in their vulnerable state they move pseudo-randomly, meaning that a player
cannot just memorise a sequence of turns to achieve high scores. The game therefore provides
an interesting platform for AI research, and as such, many people have developed their own
agents for playing the game. In fact, an annual competition was established in 2007 to deter-
mine the best Pac-Man AI. Many different approaches to the challenge have been tried, with
the best-performing agents initially being those which used a hand-crated set of rules. However,
due to the growing success of MCTS based approaches in other games, agents were inevitably
developed for this competition that employed these methods, and since 2011 the most success-
ful agents in these competitions have been those that utilised some form of tree search in their
decision making.

2



B This Project

The work of the DeepMind team has been a significant influence in recent developments in
AI. Specifically, AlphaGo Zero (Silver et al. 2016) and the later AlphaZero (Silver et al. 2018)
were hugely successful agents which managed to convincingly beat the previous champion play-
ers of Go, with AlphaZero also beating the champion chess and shogi agents. These agents made
use of a neural network to augment Monte Carlo Tree Search. More precisely, as a replacement
of the playout phase of MCTS, a neural network was used to evaluate a leaf node, estimate the
probability of the player winning from that position, and provide a vector of move probabilities.

The aim of this project is to implement an AI agent for Pac-Man using methods similar to
those used by AlphaGo Zero. However, instead of replacing the playout phase of MCTS with
a neural network, this project aims to use the network to control gameplay within the playout
phase. The motivation behind this was as follows. AlphaGo Zero uses a neural network to
estimate the probability of winning from a given game state, and the training process involved
improving this estimate. These probabilities are used to guide the agent’s decision making;
moves should be taken that lead to the leaves of the MCTS tree which have a greater estimated
probability of winning the game. However, in Pac-Man, an agent cannot win the game, so the
network’s purpose no longer makes sense. Additionally, Pac-Man provides its own performance
measure, namely the in-game score, and as such the agent can simply make decisions that lead it
towards the game state discovered with the greatest score. A neural network could still be used
in a similar way to the one in AlphaGo Zero, by estimating the final score achieved from a given
game state, instead of a probability for a winning/losing. However, this is a much more complex
problem than estimating a binary condition and has a greater range for error. This is why we
decided to try using a neural network differently, i.e. using it to influence the playout phase of
MCTS. Thus, we have a research question:

Can a Neural Network be used to enhance the playout phase of Monte Carlo Tree Search,
resulting in an effective game agent?

C Objectives / Deliverables

Before development could begin on an AI agent, this project required a copy of the Pac-
Man game with which the agent can interact. With this in place, an MCTS framework and a
neural network had to be created, each allowing an agent to select moves and play the game.
What remained was to develop a third agent, which uses the Monte Carlo Tree Search, but hands
control over to the neural network during the playout phase. Implementing all of the above
provides a minimum deliverable: an AI agent that can play the game of Pac-Man, using a neural
network in addition to Monte Carlo Tree Search.

For an intermediate objective, the aim is for the AI agent to be able to collect all of the dots
on the first level of the game within three lives. To achieve this goal, we will experiment with
different input sets, architectures, and training methods for the neural network. Additionally,
there are several ways in which we can alter the MCTS algorithm. Section IV outlines the results
of this experimentation.

The advanced objective for this project is for the AI to be able to score more points in the
game than this project’s author. More experimentation will be required for the agent to achieve
such high scores. For example, while the obvious approach is to combine the best-performing
tree search agent with the best neural network agent, it may be the case that a neural network

3



which does not perform as well on its own results in a better agent when combined with the
MCTS. Additionally, a menu should be added to the game, allowing the user to select different
options without having to edit the code. The menu will allow a game to be played by a human
or the AI agent, as well as including an option to train a new neural network. The two compo-
nents of the AI agent (tree search and neural network) should also be able to be toggled on/off
independently.

II RELATED WORK

This section provides an overview of existing work related to this project, including a detailed
explanation of the Monte-Carlo Tree Search algorithm and a brief discussion regarding how
MCTS can be utilised within the Pac-Man game environment. We then outline some of the
different approaches that can be used for neural networks in Pac-Man and highlight that there
exists more than one way of training these networks.

A Monte-Carlo Tree Search

In 1997, Deep Blue (Campbell et al. 2002) became the first computer chess-playing system
to win a chess match against a reigning world champion under regular time controls. This system
used alpha-beta search, which seeks to decrease the number of nodes that are evaluated by the
minimax algorithm in its search tree (where minimax optimises the worst result that could come
from an opponent’s move). However, Deep Blue was essentially a brute-force player, evaluating
200 million positions per second. When AI researchers turned their attention to the game of Go,
which has 5.6 times as many board positions as chess and an average of 5 times as many legal
moves per turn, new strategies had to be developed.

Monte Carlo Tree Search is a heuristic search algorithm. Instead of attempting to search
the entire space, the algorithm explores the search space with a bias towards moves which are
found to produce better results. When applied to gameplay, the search tree is built by iteratively
performing the four steps outlined below. While a greater number of iterations of this process
leads to a more explored search space and a better tree search, we can terminate the MCTS at
any time, at which point the AI selects the move represented by the root node’s highest scoring
child. Note that each node within the tree represents some game state.

Figure 2: The basic operation of Monte-Carlo Tree Search (Chaslot et al. 2008)

4



1. Selection. Starting at the root node, which represents the current game state, children are
recursively chosen according to some selection policy. When a leaf node is reached that
does not represent a terminal (game ending) state, it is selected for expansion.

2. Expansion. The selected leaf node is expanded. Children are added to the node, with each
child representing a legal move from the game state encoded by the leaf.

3. Simulation. Starting from one of the child nodes expanded in the previous stage, a playout
is run to completion; this means simulating game play until either the game ends, or some
other termination criteria is met (such as a limit on the number of moves taken). In pure
MCTS, moves are selected at random during this playout, however, some heuristic is often
employed here to improve performance. This project aims to utilise a neural network to
select these moves.

4. Backpropagation. Each node maintains a visit count, as well some measure of the success
of playouts that follow from that node. The result of the simulated playout is propagated
up the tree, updating these statistics.

As mentioned earlier, many of the best performing Pac-Man agents currently use this search
algorithm, and Ikehata & Ito (2011) proposed the following framework. During the selection
phase of the search, UCT (Upper Confidence Bound applied to Trees) is used, as formulated by
Kocsis & Szepesvári (2006). However, this formula was devised for win/lose games, so to adapt
it for use in Pac-Man, Ikehata & Ito (2011) use the following expression, where vi is the mean
score of playouts from the child node, np is the visit count of the parent node, and ni is the visit
count of the child node.

vi + c

√
lnnp

ni

For the expansion phase of the search, a child node is added to the leaf for each valid direction
in which Pac-Man can move, as shown in figure 3.

Figure 3: MCTS within a Pac-Man environment. (Ikehata & Ito 2011)

5



The majority of the rest of Ikehata & Ito’s paper (2011) is concerned with heuristics for the
simulation phase of Pac-Man, which are not relevant for this project since we will use a neural
network instead, but one other non-trivial feature of their agent is the reward mechanism in the
backpropagation phase. Instead of updating nodes with the in-game score achieved, the result of
the simulation is scored on a scale from 0 to 3. The playout is awarded 1 point if Pac-Man is
still alive at the end of the playout. Additionally, the number of dots eaten will be divided by the
number of dots that were present at the start of simulation and the number of ghosts eaten will be
divided by the number of ghosts active at the start of simulation, providing a total of 2 additional
points if all ghosts and all dots are eaten within a single playout. The use of a non-trivial reward
mechanism is an interesting one, which we shall experiment with later in the project.

Having discussed the MCTS algorithm in more detail, it should now be clear how neural
networks were used in AlphaGo Zero, and what this project’s aims are. As a reminder, AlphaGo
Zero performs selection and expansion as normal, but then instead of simulating gameplay in the
playout phase, they use a neural network to evaluate a leaf node, predict the probability of the
game state leading to a win/loss, and use those predictions in the backpropagation phase. This
project instead aims to use a neural network to dictate the moves taken during the simulation
phase of MCTS. It is therefore pertinent to dedicate some time now to the discussion of neural
networks.

B Neural Networks

A neural network is an algorithm, the design of which was inspired by biological brains. The
network works through a series of nodes, often arranged in layers, as shown in figure 4. The
nodes in the input layer receive values, which propagate throughout the network via connections.
Each node takes the weighted sum of its input values (labelled as the ‘combination function’ in
figure 4) passes the result through some function (the ‘transfer function’, also commonly referred
to as an ‘activation function’) then outputs that result to the next layer of nodes. This process
continues, until each node in the output layer has a value.

Figure 4: A simple neural network, and the mechanism behind each node (Rezaee et al. 2007).

Neural networks can be trained to produce better outputs; this is done by repeatedly adjusting
the weights of each connection, aiming to minimise the difference between the desired output and
the actual output.

6



However, there is a limit to how well a given network structure can perform, regardless of how
much the connection weights are altered. To get the best results, one must also experiment with
different structures. Not only is there scope for experimentation with the internal structure of the
network, i.e. the hidden nodes, but also what inputs/outputs to use. Gallagher & Ledwich (2007)
found some success using three N x N windows as the network inputs, centred on Pac-Man, with
a window encoding the nearby dots, walls or ghosts. However, this input set is limited in that it
only provides Pac-Man with a local view of the level, so if there are no available dots nearby, the
agent could struggle to find them within the maze. To mitigate this the window sizes could be
increased, but increasing the input size to a neural network increases the training time, as there
are more connections to adjust. Additionally, the greater the window size, the less relevant the
data on the extremities of the window will be. On top of this, in the case where Pac-Man is in
the corner of the maze, three quarters of the window will be outside of the bounds of the play
area, leading to a lot of useless inputs. An alternative input scheme is to provide the network
with values for different variables, such as the distance to each ghost, binary values indicating
the directions in which Pac-Man can turn, etc. An evaluation of different inputs and outputs
follows in the results section of this report, but for the internal structure, this project employs
neuro-evolution, the details of which are covered in section III:C.

As far as training the network is concerned, there is some evidence to suggest that incremental
learning would prove fruitful; this is the process of splitting up the task into smaller stages.
For example, the first stage could be training the network to navigate the level, collecting dots,
without the ghosts. Once the network can clear the maze of all dots, we would then introduce
the ghosts and allow it to learn to avoid them. Finally, the energisers would be added, and the
network could learn that it can use these to eat ghosts and increase the score. This training
method has been shown in some cases (Elman 1993) to be more successful than trying to train a
network on such a complex set of rules all at once. Additionally, this method draws parallels to
the neuro-evolutionary approach of evolving a complex network structure gradually, beginning
with a simple one. It would also be interesting to try incremental learning in a different order
and to compare the networks produced; it may be the case that the network learns more quickly,
or is able to achieve a better final performance, if its learns first to avoid the ghosts, and is only
then introduced to the dots that it can collect, rather than the other way around. The results of
this experimentation are also discussed later.

III SOLUTION

This section presents the design and implementation details of this project’s solution. The
project lifecycle followed the below stages, so these bullet points will form the subsections for
this part of the report.

A) Pac-Man: Creating the game.

B) MCTS: Developing an MCTS framework able to control Pac-Man.

C) NEAT: Implementing a genetic algorithm for neural networks.

D) Interfacing: Combining the tree search with the neural network.

E) Finalising: Adding a menu, testing, verification and validation.

7



Whilst there were some open source versions of the game available online, none were of
very high quality. Additionally, when creating an AI agent, it is beneficial to understand exactly
how the game works, and developing a copy exclusively for use in this project provided useful
experience. It also allowed much more freedom in deciding how the agent would interface with
the game. The entire project was developed in Java, using the Java FX library for the GUI. The
game sprites (dots, walls, Pac-Man and the ghosts) were all created specifically for this project
in GIMP.

A Pac-Man

Figure 5: A screenshot of my copy of the game.

There are many subtle details in Pac-Man, and this project’s implementation was developed
to recreate the original game as accurately as possible. An example of these small details is
that each of the ghosts has a different ‘personality’, in that they target different positions around
Pac-Man - this was added to prevent the ghosts chasing after Pac-Man in a single file line, and
to keep the gameplay interesting for more advanced players. The red ghost is called Blinky and
targets Pac-Man’s current position at all times. The pinky ghost is called Pinky and will target
the position four game tiles in front of Pac-Man. For some indication of how far this distance is,

8



note that each dot is centred on its own tile. The blue ghost is called Inky and has more complex
behaviour. A vector is drawn between the current position of Blinky and the position two tiles in
front of Pac-Man. This vector is then extended to twice its length, with the base still at Blinky’s
position, and the end is Inky’s target. The orange ghost is called Clyde, and targets Pac-Man’s
position until it is within eight tiles of Pac-Man, at which point Clyde targets the bottom-left
corner of the maze.

The path-finding used by the ghosts to reach their target positions is somewhat rudimentary.
At each intersection, they query the tile immediately in each of the possible directions they can
turn, and move towards the one with the shortest straight line distance to their target. There are
some exceptions to the ghosts’ normal movement rules, one being that there exist four junctions
on the level where a ghost can never turn upwards. Another is that ghosts cannot turn backwards
at any time except when switching between movement modes, when they are forced to reverse.
The ghosts have two modes, ‘scatter’ and ‘chase’. At the beginning of each level, the ghosts
are in scatter mode. In this mode, each ghost targets a specific tile, causing them to retreat to
separate corners of the maze. After some time (approximately 7 seconds, although these timings
vary depending on the level), the ghosts switch to chase mode, in which they target the tiles as
described above. The ghosts alternate between scatter and chase mode at fixed points in each
level, entering scatter mode a total of four times. On top of this, the ghosts each enter the level at
different times. Blinky always starts the level outside of the ghost house (the box in the middle
of the level, which is inaccessible to Pac-Man), whilst the other three ghosts start inside. Pinky is
released immediately at the start of each level, Inky is released after 30 dots have been collected,
or 4 seconds have passed between collecting any dots, and Clyde is released after an additional 60
dots have been collected, or following another 4-second pause in collecting any dots. The number
of dots required to release the ghosts decreases each level, until level four when all ghosts exit
the ghost house immediately. The work of Pittman (2009) was instrumental in discovering these
intricacies, and producing this version of the game.

It should be mentioned that this game does not include some of the less noticeable features;
for instance, in the original game, fruits occasionally appear on the map and award the player
bonus points if they can be collected within a short time limit. This would have required more
work to implement, and interesting results can be attained without including it. Additionally
Pac-Man is supposed to pause for 1/60th of a second after eating each dot, but can turn corners
slightly faster than the ghosts. The exact details of these speed differences are fairly convoluted,
but balance out to not being that dissimilar compared to not including them at all. Given the time
it would have taken to implement these features, they have been excluded from this project.

B MCTS

Section II:A of this paper extensively details how Monte Carlo Tree Search operates, and
how it can be used within a Pac-Man environment, so this section will briefly discuss how the
algorithm was implemented, and any design choices that had to be made.

Implementing MCTS first requires a Node class; this maintains a visit count, a list of child
nodes, a reference back to a parent node (or null if the node is the root of the tree) and a variable
to contain the maximum and average scores of all games which have been played out from this
node. We also need to implement a TreeSearch class, which contains a pointer to the root node
and implements the functionality for each of the four steps that comprise MCTS (selection, ex-
pansion, simulation and backpropagation). For the selection policy, we use the UCT equation, as

9



discussed earlier (Ikehata & Ito 2011), with a minor adjustment, namely that any node encoun-
tered with a visit count of 0 is immediately selected. This is to save evaluation time - there are no
heuristics to predict the outcome of a playout from a node that has never been visited before, so
we should select it immediately for expansion. The details of expansion were discussed earlier,
so the next step is simulation. Gameplay resumes, with Pac-Man moving towards the position
associated with the selected leaf node. It may be the case that in navigating to the state associated
with a leaf node, Pac-Man is caught by a ghost. In this case, the current node in the tree search is
marked as leading to death, and this iteration of the tree search is terminated early. Then, in the
next selection phase, this node and all of its children can be ignored - we do not want to waste any
more time attempting to explore a path which has been confirmed to lead to death. If navigating
to the selected leaf node does not result in Pac-Man’s capture, the game continues from the leaf
node’s position with Pac-Man moving in a random direction each time he reaches a junction in
the level. Note that this is the stage of the tree search where we aim to replace random movement
with a neural network controlling Pac-Man’s movement. The simulation stage continues until
either a ghost eats Pac-Man, or a maximum number of moves has been made; at this stage, the
game state is restored to what it was before the simulation ended.

The final step is backpropagation. From the leaf node selected in the selection phase, we
traverse up the tree, incrementing each node’s visit count, and adjusting its maximum and average
score variables as appropriate.

These steps can be repeated an arbitrary number of times; the number is a tradeoff between
better decision making, as a result of a more thoroughly explored search space, and shorter
computation time. 20 rounds seem to give a sufficient level of exploration while maintaining a
relatively short ‘thinking time’, but this variable will be revisited later. When the tree search is
completed, the AI must decide in which direction Pac-Man should move. To do this, we simply
pick the root node’s child which has discovered the greatest maximum score and move in the
direction towards that node’s associated position.

C NEAT

Figure 6: An example of a NEAT genome. The second connection gene is disabled, so the
connection that it specifies is not expressed in the network. (Stanley 2004)

10



Neuro-Evolution of Augmenting Topologies is a genetic algorithm which evolves neural net-
works (Stanley 2004). Each node and connection within the network is encoded as a gene. Node
genes specify what type of node they are (input, output or hidden), and connection genes list
an in-node, an out-node, a weight, and whether the connection is currently enabled/disabled.
Additionally, each gene contains an ID number, referred to as the ‘innovation’. The innovation
must be unique for each node and each connection. A genome represents a single network and
contains a list of node and connection genes, as shown in figure 6.

The NEAT algorithm describes methods to create new genomes through crossover (producing
a new genome from two old ones) and mutation (altering an existing genome). In fact, the genetic
encoding scheme described above was designed specifically to allow corresponding genes to be
easily lined up during crossover, avoiding the Competing Conventions Problem (Schaffer et al.
1992). To create a new genome, two existing genomes are selected with probability proportional
to their evaluated fitness (the score achieved when the network is used to play Pac-Man). All
genes present in both parents are passed onto the child genome, with connection weights being
randomly chosen from either parent. The genes present in the more fit parent are also passed
onto the child genome. If a connection gene is disabled in either parent, then it has some fixed
probability of being disabled in the child genome too; this probability is a parameter of NEAT.

Figure 7: An example of a crossover between two genomes in NEAT. (Stanley 2004)

Once a new genome has been created, it undergoes mutation. There are three different types
of mutation within NEAT, and a new genome has different probabilities of undergoing each type.

• Add Connection: Two non-connected nodes are selected, and a connection is added be-
tween them with a random weight.

11



• Add Node: A random connection, connecting node X to node Y, is selected and disabled.
A new node, Z, is created, as well as connections from X to Z, and Z to Y.

• Mutate Connection: A random connection is selected. Its weight is either set to a new
random value, or multiplied by some random value, according to a fixed probability.

The final idea behind NEAT is protecting innovation through speciation. The idea is to divide
the population into species, such that similar network topologies are in the same species, and to
carry the fittest member from each species through to the next generation. This allows genomes
to compete primarily within their own species, instead of with the population at large, so that
topological innovations are protected and have time for their structures to be optimised. We can
measure the compatibility distance δ of two genomes, and speciate them using this as a threshold.

δ =
c1E

N
+
c2D

N
+ c3 · W̄

In the above equation, E is the number of excess genes (see figure 7), D is the number
of disjoint genes, and W̄ is the average weight difference of matching connection genes. The
coefficients c1, c2 and c3 allow us to adjust the importance of the three factors, and N is the
number of genes within the larger of the two genomes.

In each generation, genomes are sequentially placed into species. Each existing species is
represented by a random ‘mascot’ genome, which was present in the species during the previous
generation. A given genome g is placed in the first species with which g is compatible with the
species’ mascot, where two genomes are compatible if their compatibility distance δ is below a
fixed value. If g is not compatible with any existing species, a new species is created with g as
its mascot. Over time, it may be that case that the population becomes full of discreet species,
each of which is protected, and no further evolution can take place. To avoid this, we introduce
a stagnation counter. If the maximum fitness of a species does not improve in 15 generations,
then the species, and all of its members, are removed from the population. Additionally, when
the number of species is greater that 15% of the population size, we increase δ, and if the number
of species is one, we decrease δ. This helps to ensure that there are enough species to protect
innovation within the population, but not so many that no new mutations are experimented with.

Having implemented these details, we can now create a minimal genome, then apply the
NEAT algorithm to evolve a network structure over many generations. However, the structure of
a ‘minimal genome’ is not completely intuitive. One obvious approach would be to initialise a
fully connected network with no hidden layers, and allow a complex structure to form over time.
On the other hand, Whiteson et al. (2005) found that it’s often beneficial to begin with networks
that have no initial connections. To understand how this could be effective, we can use an exam-
ple from Pac-Man; if one input were to represent whether there are dots to be collected directly
below Pac-Man, this node only really needs to be connected to the output which corresponds to
Pac-Man moving down. Of course, with a fully connected network, the other connections may
eventually evolve to have very low weights, or even be disabled all together, but in this will only
result in an increase in the time required to train an efficient agent, particularly in larger networks.

Regarding the input/outputs for the network, a few different ideas were tried. A discussion
of what worked well, and what didn’t, will follow in the results section of this paper.

12



D Interfacing

This stage of the project ensured that the two - up until this point separate - components
(MCTS and NN) were able to operate together, as initially planned. The MCTS code was already
in place, but using a random move each time frame during the simulation phase. Additionally,
methods had already been created for initialising a neural network from a given genome, getting
the required inputs, passing these inputs to the network and calculating the outputs, from which
a control for Pac-Man could be extracted. All that this stage required was to initialise a neural
network at the beginning of the game, and query the network for a decision instead of getting a
random move during MCTS playout.

To enable the use of a previously trained genome in the game, a custom file format was
created, storing information about each connection within the network. Specifically, connections
are written to their own lines, with vertical bars separating each variable (in node ID, out node
ID, connection weight, is the connection expressed, and connection ID). At the end of a NEAT
training session, the genome with the highest score is written to the file. Note: while training, this
project also catches signal interrupts, so that the best genome can be saved even if the training
process is terminated prematurely. To recreate a network, we instantiate a minimal genome as
if we were about to commence training; this is for the sole purpose of initialising the input and
output nodes. We then read the genome file, adding connections between nodes as we find them.
When we come across a new node ID, we can simply create a new hidden node. This process
exactly recreates the saved network.

E Finalising

By this stage of the project, all of the required functionality had been implemented, but some
useful features were added to increase the ease of use of software. A menu screen was created
with options for playing the game as a human, allowing the AI agent to play the game, or training
a new genome from scratch. Additionally, an options menu allowed the MCTS and NN parts of
the agent to be turned on/off independently, for the purposes of later testing, and also allowed
the ghosts, dots and energisers to be turned on/off, so that we could attempt incremental learning
during NEAT. Of course, all of these things could be changed manually in the code, but the menu
was a nice final touch for the project, and would make it easier to collect some final results.

Testing: While developing the game, manual unit testing was used each time a new feature
was added. For example, one of the first implemented methods was called canMove; the method
takes a string and returns a boolean value to indicate if Pac-Man can move in this direction. To
test this method worked properly, Pac-Man was moved to several different locations of the maze,
and the control flow of this function was analysed to ensure that it worked as intended. However,
as the number of methods increased, the testing approach depended more on integration testing.
Most bugs typically presented themselves very quickly when trying to play a game, and a great
many games have been played, both by human players when testing, and later by the AI when
experimenting and collecting results.

Verification & Validation: The requirements and specifications of this project’s software
were only brief; a Pac-Man game needed to be produced, and an AI agent had to be developed
that was able to play it. The validation process was reasonably straightforward, but the design
report and project brief were frequently consulted to ensure that the software met the needs of this
project. The primary concern here was that the game was developed in a way that accommodated

13



simple interaction with an AI agent. To meet this criterion, every game loop, before updating the
game state, a method is queried to get the next control input. When a human is playing the game,
this method gets the last arrow key pressed, and returns the appropriate direction. When an AI
agent is controlling the game, this method either performs the required MCTS steps or queries a
neural network, as appropriate.

IV RESULTS

As mentioned earlier, the aim of this project was to experiment with different ways of im-
plementing MCTS and neural networks within a Pac-Man environment, as well as to combine
the two approaches and evaluate the hybrid agent’s performance. This section will begin with
an analysis of different MCTS approaches, revisiting ideas mentioned in sections II:A and III:B.
Once we have established what works well for MCTS, we will evaluate different neural network
architectures and training methods. Having discussed both MCTS and NNs in detail, we shall
finally combine the approaches and compare the final agent to the results already obtained. Addi-
tionally, some human players’ scores will be included to provide a measure of how these agents
compare.

Given that we have a lot of different approaches to experiment with, each agent will be
allowed to play just three games, and the average scores will be used as a comparison. The
human players will also be allowed to play three games, but their maximum scores will be used,
as a human player takes some time to understand the rules of the game, and adjust to the controls,
whereas a computer does not require this time to ‘warm up’.

A MCTS

When describing a new approach for the tree search, square brackets will indicate which row
in Table 1 is currently being discussed.

The initial MCTS implemented in this project was as described in previous sections. Once
the search tree had been built and a move needed to be taken, the child node of the root element
which had found the greatest score in a playout was selected, with the score simply being the
in-game score achieved [1]. The first experiment was instead selecting the child node with the
highest average score of all playouts [2], which resulted in better performance.

Next, it was noticed that if the tree search is unable to reach any dots in a playout, Pac-Man
sometimes moves straight towards a ghost. To reduce the likelihood of this happening, a penalty
of -500 points was added to the score if the playout ended with Pac-Man being eaten [3,4]. In the
event where every playout ends in death this will have no effect, but if even one playout ends with
Pac-Man being alive, despite having collected no dots, this path should now be taken. Indeed,
this typically increased the score achieved, as the agent will try to evade the ghosts for longer,
and end up moving towards the remaining available dots on the level.

Pepels et al. (2014) suggested that when expanding a node, its children should not include its
parent, preventing backtracking. They state that if reverse moves are expanded, more simulations
per move are required in order to have conclusive differences in rewards, so not allowing them
allows more nodes to be expanded, and reduces the amount of similar paths in the tree [5-8].

Finally, Ikehata & Ito’s (2011) bespoke reward scheme for the playouts was tested, although
this did not provide good results [9, 10]. An explanation for this may be is that they used this
system as part of a greater framework. In their approach, Pac-Man was assigned different strate-

14



gies, depending on the current state of the game, and their reward equation was actually changed
according to the current strategy. This may indeed result in the given reward system producing
good results, but in the case of this project, it was not so.

From these experiments, we find the best MCTS framework to be significantly better than the
all others. Disabling backtracking, as proposed by Pepels et al. (2014), using the average score
instead of the maximum score for decision making, and using the in-game score as the reward
system seems to be the best configuration within this environment.

Table 1: Scores achieved by MCTS agents

Score Used Reward System Backtracking Game 1 Game 2 Game 3 Average

Max In-game score Allowed 3320 3400 7940 4887
Average In-game score Allowed 6340 7280 3710 5777
Max 500pt death penalty Allowed 6850 6220 6970 6680
Average 500pt death penalty Allowed 5940 7020 4170 5710
Max In-game score Disabled 7540 8620 4250 6803
Average In-game score Disabled 12240 11310 13790 12447
Max 500pt death penalty Disabled 9930 7636 5800 7789
Average 500pt death penalty Disabled 13980 8960 2890 8610
Max Different rewards Disabled 2900 3670 3230 3267
Average Different rewards Disabled 3160 3000 2740 2967

B Neural Networks

In designing a neural network, three different input sets were evaluated.

1. A vector of 32 different values, encoding normalised values for: the distance and direction
to each of the four ghosts; whether or not each ghost is edible, and if the ghost is moving
towards Pac-Man; distance and direction to the closest dot; distance and direction to the
closest energiser; Pac-Man’s current position on the screen; the directions that Pac-Man is
currently able to move in.

2. A sliding window, centred on Pac-Man, with two channels. One channel contained +1 for
each dot and -1 for each wall tile, and the other channel had a +1 for each edible ghost and
a -1 for each non-edible ghost, with all other inputs being zero.

3. A simpler input vector with just 12 values, encoding for each of the four directions: if Pac-
Man can turn in that direction; whether there is a dot in direct line-of-sight; the distance to
the nearest ghost, starting one tile in that direction.

The first input set did not result in any great performance; it was unable to produce a net-
work capable of scoring more than around 1500 points, even after experimenting with different
parameters for the NEAT algorithm and different activation functions for the neural network.
This was with a population size of 100, and poor results were obtained even when leaving the
training process running over night, reaching 200 generations. It may be the case that increasing

15



the population size and number of generations further would allow this input set to produce a
competent agent, but given that the neural network is only a part of this project, the decision was
made to try something else.

With the second approach, we initally tried a 13 x 13 window. It stands to reason that the
greater the window size, the more information the AI would have, leading to better performance.
However, this also means that there are many more possible connections, so the Neuro-Evolution
takes longer to find ones which work well. Additionally, the further the input node is from the
centre of the window, the less relevant it should be to Pac-Man’s decision making, so not only are
there lots of potential connections to be made, but to randomly find a configuration that works
well takes a long time. Decreasing the window size to combat this results in Pac-Man being able
to detect threats from less distance, which is not ideal. A heuristic that was experimented with
here was when adding a connection, instead of randomly selecting an input node, sample from a
normal distribution so that connections are more likely to be added to inputs near the centre of
the window. However, as soon as hidden nodes are added to the network through mutation, this
idea does not work. In general, we did not find much success with this network, even when using
incremental learning; to accommodate this training technique, the ghosts were disabled and the
inputs halved to just encode the relative positions of nearby walls and dots, but the performance
was still poor. The best genomes produced were able to achieve scores in the range of 1000-2000,
and using incremental training seemed to have no effect on these scores.

The third input set was slightly more successful. The first four values indicate whether Pac-
Man can move up, down, left and right, with a 1 if he can, or a -1 if not. The next four values
indicate if there is a dot in line-of-sight in each direction, with a 1 if there is, else a 0. Initially,
training was performed on just the dots, and the agent seemed to be performing better than the
previous methods, so the ghosts were introduced. To give the network some indication of the
danger of turning in each direction, it is provided with one more input per direction. If Pac-Man
can’t move in a direction, this input is again zero; otherwise, a value inversely proportional to
the distance to the nearest ghost is used. This was implemented by searching pixel-by-pixel in a
straight line until either a ghost or a wall is reached. If a wall is reached, we check if the current
position is a corner or an intersection. If it’s a corner, then we turn the corner and continue the
pixel-wise search. If a junction is reached, A* search is used to find the shortest path to each
ghost from the junction. The distances of these paths can then be used to calculate the shortest
distance to a ghost. The input value is then 50 divided by the number of pixels to the closest
ghost. Additionally, if that ghost is edible, the number is positive, otherwise it is negative. This
allows the AI to navigate towards ghosts Pac-Man can eat, but away from ones that will eat
Pac-Man.

This third neural network agent was able to perform better, but it still wasn’t achieving partic-
ularly high scores. Taking inspiration from an online video of a similar agent (CodeBullet 2018),
the inputs and outputs were changed so that instead of providing information about each of the
four cardinal directions (up, down, left and right), the information is provided relative to Pac-
Man’s current direction (forwards, backwards, left and right). The theory behind this is that
instead of having to learn rules for each direction, for example, if there is wall immediately
above Pac-Man, don’t try to turn up, if there is a wall immediately to the right of Pac-Man, don’t
turn right etc., the agent could move much further with a single rule: if there is a wall in front of
Pac-Man, don’t keep trying to move forwards. This is obviously a simplification for the nuances
of neural networks, but the theory seems to hold up, and training immediately began to produce

16



better results, even for early network generations. This final change was enough that the net-
work was occasionally able to clear the first level of dots, which was deemed enough progress to
continue with the project.

C Final Agent

To produce the final agent for this project, the best MCTS agent was combined with the best
trained network. Each of these agents’ scores are included in Table 2, along with the scores of
the agent resulting from their combination.

Table 2: Scores achieved by final agents

Agent Game 1 Game 2 Game 3 Average

MCTS 12240 11310 13790 12447
Neural Network 3200 2930 4150 3427
Hybrid Agent 16000 15450 26860 19437

V EVALUATION

The results in Table 2 show that the hybrid approach of using MCTS with a neural network
controlling Pac-Man during the playout phase can indeed increase the performance of an AI
agent in the game, therefore positively answering the research question. In fact, from the games
recorded in the results section, we see a 56% improvement in the average score achieved by the
AI.

In the introduction of this paper, three levels of aims were outlined. As a minimum deliver-
able, we set out to develop an AI agent that can play the game of Pac-Man, using a neural network
in addition to Monte Carlo Tree Search. For an intermediate objective, the AI agent should be
able to collect all of the dots on the first level of the game within three lives, and an advanced
objective was for the AI to be able to score more points in the game than this project’s author.
At the project’s conclusion all of these aims have been met. In this respect, the project was a
great success. However, there is still much experimentation that could result in improvements
to the AI. For example, while the tree search part of the agent can perform well on its own, the
neural network achieves much lower scores, and its performance plateaued after very few gener-
ations of training. With a better performing neural network, we may see more improvement in
the hybrid agent. One idea that could improve the network’s performance is adding an element
of randomness to the initial game state during training. When training, we noticed that some
networks are successful only because their network structure and the initial configuration of the
game coincidentally allow them to collect multiple points before being eaten. However, when
these networks are used to control Pac-Man from a different starting configuration, as is often
the case when trying to play the game, they perform very poorly; they have simply not evolved
a structure capable of reacting to the ghosts positions and the maze environment. We postulate
therefore that more successful networks could be produced in a bespoke training environment,
where the initial positions of the ghosts are randomised, and potentially even the structure of
the maze. The networks would have to become much more generalised and dynamic to enjoy

17



success in this environment. Alternatively, the NEAT algorithm could be replaced entirely with a
larger, pre-built neural network. Since starting this project, Dienstknecht (2018) has found some
success using a Convolutional Neural Network within a Pac-Man AI.

Despite the limited performance of the neural network, this project was a success. As stated
earlier, the objectives were met, and the timeline roughly followed the initial draft that was laid
out in the first documents. Towards the end of the epiphany term, the project had to be put on
hold due to time pressures for other university coursework, meaning that some experiments for
the neural networks still had to be finished over the easter holidays. However, we were able to
catch up in time to get some positive results and write them into this dissertation.

It was mentioned earlier that some scores of human players would be included, in order to
gauge how the final agent compares; Table 3 shows these results. In contrast to the AI agents,
when collecting scores from human players, the final column in the table highlights the highest
score from three games rather than the average. This is because it takes time for a human to
become accustomed to the rules of the game, and the controls, so their first game is expected to
be lower than their skill level, whereas this learning process does not take place with an AI agent.
In this table, I, the author of this dissertation, am labelled as player 1. Whilst I am by no means
a professional Pac-Man player, I have nonetheless spent a lot of time playing in the past few
months, while testing the game and its features, and know exactly how the game is implemented
having written it myself, so can - to some extent - predict the motion of the ghosts. My scores
therefore reflect the level of a skilled player, while the rest of the scores demonstrate a range
of abilities from novice to mid-level. It should be noted that human players have managed to
get a perfect score in Pac-Man, meaning that they have played 255 consecutive levels, eating all
four ghosts each time they eat an energiser dot, and not losing a single life, resulting in a score
of 3333360. Therefore, the average score of 19437 achieved by the AI agent in this project is
by no means superhuman. However, it is a higher score than any recorded in Table 3, and very
few humans have ever achieved a perfect score. It is thus reasonable to suggest that the final AI
produced plays at the level of a skilled human player, albeit not quite a professional.

Table 3: A comparison of human players with the final agent

Player Game 1 Game 2 Game 3 Final Score

1 3390 18490 17800 18490
2 3590 6110 1980 6110
3 3530 5040 8800 8800
4 2240 4250 2420 4250
5 6140 8830 5100 8830
6 1190 1620 4330 4330

AI 16000 15450 26860 19437

Note: The ‘final score’ column displays the high score of humans, but the average score for the AI.

VI CONCLUSIONS

In this project, a neural network has been used to control the playout stage of a Monte Carlo
Tree Search in a Pac-Man AI agent, resulting in an average score increase of 56%. In designing

18



the tree search, ideas were taken from existing agents (Ikehata & Ito 2011), including the 2012
IEEE CIG Conference ’Pac-Man Versus Ghost Team’ competition winner (Pepels et al. 2014).
Neural networks were then evolved using NEAT (Stanley 2004) for a few different input and
outputs sets. The most successful network was then used within the MCTS search, resulting in
the aforementioned improvements.

In the evaluation, it was mentioned that the neural network was not able to achieve very
high scores on its own, and some enhancements were proposed in order to improve upon this.
To extend the project further, another potential aim could be to reduce the computation time
of the MCTS. While the tree search is limited to performing 20 rounds of simulation, and 20
moves per simulation, this is too much computation for the agent to play the game in real time.
The number of simulations and the depth of the playouts could be decreased in order to reduce
computation time, but this would come at the cost of lower performance. Additionally, the agent
could estimate what the game state will be by the time Pac-Man reaches the next junction in
the maze and start running MCTS in a different thread, from this game state, so that the game
does not have to pause for as long at each junction. On top of this, Pepels et al. (2014) have
created some heuristics and alterations to the MCTS algorithm allowing for real-time MCTS
within a complex game environment, such as reusing the search tree for several moves with a
decay factor, and these ideas could be worked into this agent.

References

Campbell, M., Hoane, A. & hsiung Hsu, F. (2002), ‘Deep blue’, Artificial Intelligence 134(1), 57
– 83.

Chaslot, G. M. J.-B., Winands, M. H. M., van den Herik, H. J., Uiterwijk, J. W. H. M. & Bouzy, B.
(2008), ‘Progressive strategies for monte-carlo tree search’, New Mathematics and Natural
Computation 4, 343–357.

CodeBullet (2018), ‘AI learns to play pacman using neat’. Accessed: 22-January-2019.
URL: https://www.youtube.com/watch?v=QpyHYRBKy8U

Dienstknecht, M. (2018), Enhancing Monte Carlo Tree Search by Using Deep Learning Tech-
niques in Video Games, PhD thesis, Department of Data Science and Knowledge Engineer-
ing, Maastricht University.

Elman, J. L. (1993), ‘Learning and development in neural networks: the importance of starting
small’, Cognition 48(1), 71 – 99.

Gallagher, M. & Ledwich, M. (2007), Evolving pac-man players: Can we learn from raw input?,
in ‘2007 IEEE Symposium on Computational Intelligence and Games’, pp. 282–287.

Ikehata, N. & Ito, T. (2011), Monte-carlo tree search in Ms. Pac-Man, in ‘2011 IEEE Conference
on Computational Intelligence and Games (CIG’11)’, pp. 39–46.

Kocsis, L. & Szepesvári, C. (2006), Bandit based monte-carlo planning, in ‘Proceedings of the
17th European Conference on Machine Learning’, ECML’06, Springer-Verlag, Berlin, Hei-
delberg, pp. 282–293.

19



Pepels, T., Winands, M. H. M. & Lanctot, M. (2014), ‘Real-time monte carlo tree search in ms
pac-man’, IEEE Transactions on Computational Intelligence and AI in Games 6(3), 245–
257.

Pittman, J. (2009), The Pac-Man dossier, Technical report, Gamasutra. Accessed: 17-January-
2019.
URL: http://www.gamasutra.com/view/feature/3938/thepacmandossier.php

Rezaee, R., Kadkhodaie, A. & Alizadeh, P. (2007), ‘Intelligent approaches for the synthesis of
petrophysical logs’, Journal of Geophysics and Engineering 5, 12.

Schaffer, J. D., Whitley, D. & Eshelman, L. J. (1992), Combinations of genetic algorithms and
neural networks: a survey of the state of the art, in ‘[Proceedings] COGANN-92: Interna-
tional Workshop on Combinations of Genetic Algorithms and Neural Networks’, pp. 1–37.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T. &
Hassabis, D. (2016), ‘Mastering the game of Go with deep neural networks and tree search’,
Nature 529(7587), 484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre,
L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K. & Hassabis, D. (2018), ‘A gen-
eral reinforcement learning algorithm that masters chess, shogi, and go through self-play’,
Science 362(6419), 1140–1144.

Stanley, K. O. (2004), Efficient Evolution of Neural Networks Through Complexification, PhD
thesis, Department of Computer Sciences, The University of Texas at Austin.

Whiteson, S., Stone, P., Stanley, K. O., Miikkulainen, R. & Kohl, N. (2005), Automatic feature
selection via neuroevolution, in ‘Proceedings of the Genetic and Evolutionary Computation
Conference’.

20


